Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 512
Filtrar
1.
Science ; 383(6687): eadg6757, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38452088

RESUMO

The hippocampal mossy fiber synapse, formed between axons of dentate gyrus granule cells and dendrites of CA3 pyramidal neurons, is a key synapse in the trisynaptic circuitry of the hippocampus. Because of its comparatively large size, this synapse is accessible to direct presynaptic recording, allowing a rigorous investigation of the biophysical mechanisms of synaptic transmission and plasticity. Furthermore, because of its placement in the very center of the hippocampal memory circuit, this synapse seems to be critically involved in several higher network functions, such as learning, memory, pattern separation, and pattern completion. Recent work based on new technologies in both nanoanatomy and nanophysiology, including presynaptic patch-clamp recording, paired recording, super-resolution light microscopy, and freeze-fracture and "flash-and-freeze" electron microscopy, has provided new insights into the structure, biophysics, and network function of this intriguing synapse. This brings us one step closer to answering a fundamental question in neuroscience: how basic synaptic properties shape higher network computations.


Assuntos
Fibras Musgosas Hipocampais , Terminações Pré-Sinápticas , Fibras Musgosas Hipocampais/fisiologia , Fibras Musgosas Hipocampais/ultraestrutura , Terminações Pré-Sinápticas/fisiologia , Terminações Pré-Sinápticas/ultraestrutura , Transmissão Sináptica , Região CA3 Hipocampal , Células Piramidais , Humanos , Animais
2.
eNeuro ; 11(3)2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38164567

RESUMO

Brain-derived neurotrophic factor (BDNF) is important in the development and maintenance of neurons and their plasticity. Hippocampal BDNF has been implicated in Alzheimer's disease (AD) because hippocampal levels in AD patients and AD animal models are often downregulated, suggesting that reduced BDNF contributes to AD. However, the location where hippocampal BDNF protein is most highly expressed, the mossy fiber (MF) axons of dentate gyrus granule cells (GCs), has been understudied, and not in controlled conditions. Therefore, we evaluated MF BDNF protein in the Tg2576 mouse model of AD. Tg2576 and wild-type (WT) mice of both sexes were examined at 2-3 months of age, when amyloid-ß (Aß) is present in neurons but plaques are absent, and 11-20 months of age, after plaque accumulation. As shown previously, WT mice exhibited high levels of MF BDNF protein. Interestingly, there was no significant decline with age in either the genotype or sex. Notably, MF BDNF protein was correlated with GC ΔFosB, a transcription factor that increases after 1-2 weeks of elevated neuronal activity. We also report the novel finding that Aß in GCs or the GC layer was minimal even at old ages. The results indicate that MF BDNF is stable in the Tg2576 mouse, and MF BDNF may remain unchanged due to increased GC neuronal activity, since BDNF expression is well known to be activity dependent. The resistance of GCs to long-term Aß accumulation provides an opportunity to understand how to protect vulnerable neurons from increased Aß levels and therefore has translational implications.


Assuntos
Doença de Alzheimer , Humanos , Masculino , Feminino , Camundongos , Animais , Lactente , Doença de Alzheimer/patologia , Fibras Musgosas Hipocampais/fisiologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Peptídeos beta-Amiloides/metabolismo , Giro Denteado/fisiologia
3.
J Pharmacol Exp Ther ; 388(2): 325-332, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-37643794

RESUMO

Organophosphate (OP) compounds are highly toxic and include pesticides and chemical warfare nerve agents. OP exposure inhibits the acetylcholinesterase enzyme, causing cholinergic overstimulation that can evolve into status epilepticus (SE) and produce lethality. Furthermore, OP-induced SE survival is associated with mood and memory dysfunction and spontaneous recurrent seizures (SRS). In male Sprague-Dawley rats, we assessed hippocampal pathology and chronic SRS following SE induced by administration of OP agents paraoxon (2 mg/kg, s.c.), diisopropyl fluorophosphate (4 mg/kg, s.c.), or O-isopropyl methylphosphonofluoridate (GB; sarin) (2 mg/kg, s.c.), immediately followed by atropine and 2-PAM. At 1-hour post-OP-induced SE onset, midazolam was administered to control SE. Approximately 6 months after OP-induced SE, SRS were evaluated using video and electroencephalography monitoring. Histopathology was conducted using hematoxylin and eosin (H&E), while silver sulfide (Timm) staining was used to assess mossy fiber sprouting (MFS). Across all the OP agents, over 60% of rats that survived OP-induced SE developed chronic SRS. H&E staining revealed a significant hippocampal neuronal loss, while Timm staining revealed extensive MFS within the inner molecular region of the dentate gyrus. This study demonstrates that OP-induced SE is associated with hippocampal neuronal loss, extensive MFS, and the development of SRS, all hallmarks of chronic epilepsy. SIGNIFICANCE STATEMENT: Models of organophosphate (OP)-induced SE offer a unique resource to identify molecular mechanisms contributing to neuropathology and the development of chronic OP morbidities. These models could allow the screening of targeted therapeutics for efficacious treatment strategies for OP toxicities.


Assuntos
Epilepsia , Estado Epiléptico , Ratos , Masculino , Animais , Ratos Sprague-Dawley , Fibras Musgosas Hipocampais/fisiologia , Organofosfatos/efeitos adversos , Acetilcolinesterase , Estado Epiléptico/induzido quimicamente , Convulsões/induzido quimicamente , Modelos Animais de Doenças
4.
Proc Natl Acad Sci U S A ; 120(50): e2307509120, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38064513

RESUMO

Hilar mossy cells (MCs) are principal excitatory neurons of the dentate gyrus (DG) that play critical roles in hippocampal function and have been implicated in brain disorders such as anxiety and epilepsy. However, the mechanisms by which MCs contribute to DG function and disease are poorly understood. A defining feature of MCs is the promoter activity of the dopamine D2 receptor (D2R) gene (Drd2), and previous work indicates a key role for dopaminergic signaling in the DG. Additionally, the involvement of D2R signaling in cognition and neuropsychiatric conditions is well known. Surprisingly, though, the function of MC D2Rs remains largely unexplored. In this study, we show that selective and conditional removal of Drd2 from MCs of adult mice impaired spatial memory, promoted anxiety-like behavior, and was proconvulsant. To determine the subcellular expression of D2Rs in MCs, we used a D2R knockin mouse which revealed that D2Rs are enriched in the inner molecular layer of the DG, where MCs establish synaptic contacts with granule cells (GCs). D2R activation by exogenous and endogenous dopamine reduced MC to dentate GC synaptic transmission, most likely by a presynaptic mechanism. In contrast, exogenous dopamine had no significant impact on MC excitatory inputs and passive and active properties. Our findings support that MC D2Rs are essential for proper DG function by reducing MC excitatory drive onto GCs. Lastly, impairment of MC D2R signaling could promote anxiety and epilepsy, therefore highlighting a potential therapeutic target.


Assuntos
Epilepsia , Fibras Musgosas Hipocampais , Camundongos , Animais , Fibras Musgosas Hipocampais/fisiologia , Dopamina/metabolismo , Hipocampo/metabolismo , Epilepsia/genética , Epilepsia/metabolismo , Receptores de Dopamina D2/genética , Receptores de Dopamina D2/metabolismo , Giro Denteado/metabolismo
5.
Proc Natl Acad Sci U S A ; 120(51): e2312752120, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38091292

RESUMO

Somatostatin-expressing interneurons (SOMIs) in the mouse dentate gyrus (DG) receive feedforward excitation from granule cell (GC) mossy fiber (MF) synapses and provide feedback lateral inhibition onto GC dendrites to support environment representation in the DG network. Although this microcircuitry has been implicated in memory formation, little is known about activity-dependent plastic changes at MF-SOMI synapses and their influence on behavior. Here, we report that the metabotropic glutamate receptor 1α (mGluR1α) is required for the induction of associative long-term potentiation (LTP) at MF-SOMI synapses. Pharmacological block of mGluR1α, but not mGluR5, prevented synaptic weight changes. LTP at MF-SOMI synapses was postsynaptically induced, required increased intracellular Ca2+, involved G-protein-mediated and Ca2+-dependent (extracellular signal-regulated kinase) ERK1/2 pathways, and the activation of NMDA receptors. Specific knockdown of mGluR1α in DG-SOMIs by small hairpin RNA expression prevented MF-SOMI LTP, reduced SOMI recruitment, and impaired object location memory. Thus, postsynaptic mGluR1α-mediated MF-plasticity at SOMI input synapses critically supports DG-dependent mnemonic functions.


Assuntos
Fibras Musgosas Hipocampais , Plasticidade Neuronal , Camundongos , Animais , Fibras Musgosas Hipocampais/fisiologia , Plasticidade Neuronal/fisiologia , Interneurônios/fisiologia , Potenciação de Longa Duração/fisiologia , Sinapses/metabolismo , Somatostatina/metabolismo , Giro Denteado/metabolismo , Transmissão Sináptica
6.
Neuron ; 111(19): 3084-3101.e5, 2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37797581

RESUMO

Heterozygous mutations in the dual-specificity tyrosine phosphorylation-regulated kinase 1a (Dyrk1a) gene define a syndromic form of autism spectrum disorder. The synaptic and circuit mechanisms mediating DYRK1A functions in social cognition are unclear. Here, we identify a social experience-sensitive mechanism in hippocampal mossy fiber-parvalbumin interneuron (PV IN) synapses by which DYRK1A recruits feedforward inhibition of CA3 and CA2 to promote social recognition. We employ genetic epistasis logic to identify a cytoskeletal protein, ABLIM3, as a synaptic substrate of DYRK1A. We demonstrate that Ablim3 downregulation in dentate granule cells of adult heterozygous Dyrk1a mice is sufficient to restore PV IN-mediated inhibition of CA3 and CA2 and social recognition. Acute chemogenetic activation of PV INs in CA3/CA2 of adult heterozygous Dyrk1a mice also rescued social recognition. Together, these findings illustrate how targeting DYRK1A synaptic and circuit substrates as "enhancers of DYRK1A function" harbors the potential to reverse Dyrk1a haploinsufficiency-associated circuit and cognition impairments.


Assuntos
Transtorno do Espectro Autista , Animais , Camundongos , Encéfalo , Fibras Musgosas Hipocampais/fisiologia , Parvalbuminas , Reconhecimento Psicológico , Sinapses/fisiologia
7.
Neuron ; 111(23): 3802-3818.e5, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37776852

RESUMO

Various specialized structural/functional properties are considered essential for contextual memory encoding by hippocampal mossy fiber (MF) synapses. Although investigated to exquisite detail in model organisms, synapses, including MFs, have undergone minimal functional interrogation in humans. To determine the translational relevance of rodent findings, we evaluated MF properties within human tissue resected to treat epilepsy. Human MFs exhibit remarkably similar hallmark features to rodents, including AMPA receptor-dominated synapses with small contributions from NMDA and kainate receptors, large dynamic range with strong frequency facilitation, NMDA receptor-independent presynaptic long-term potentiation, and strong cyclic AMP (cAMP) sensitivity of release. Array tomography confirmed the evolutionary conservation of MF ultrastructure. The astonishing congruence of rodent and human MF core features argues that the basic MF properties delineated in animal models remain critical to human MF function. Finally, a selective deficit in GABAergic inhibitory tone onto human MF postsynaptic targets suggests that unrestrained detonator excitatory drive contributes to epileptic circuit hyperexcitability.


Assuntos
Fibras Musgosas Hipocampais , Sinapses , Animais , Humanos , Fibras Musgosas Hipocampais/fisiologia , Sinapses/fisiologia , Potenciação de Longa Duração/fisiologia , Transdução de Sinais
8.
Cells ; 12(14)2023 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-37508553

RESUMO

Muscarinic acetylcholine receptors are well-known for their crucial involvement in hippocampus-dependent learning and memory, but the exact roles of the various receptor subtypes (M1-M5) are still not fully understood. Here, we studied how M1 and M3 receptors affect plasticity at the mossy fiber (MF)-CA3 pyramidal cell synapse. In hippocampal slices from M1/M3 receptor double knockout (M1/M3-dKO) mice, the signature short-term plasticity of the MF-CA3 synapse was not significantly affected. However, the rather unique NMDA receptor-independent and presynaptic form of long-term potentiation (LTP) of this synapse was much larger in M1/M3-deficient slices compared to wild-type slices in both field potential and whole-cell recordings. Consistent with its presynaptic origin, induction of MF-LTP strongly enhanced the excitatory drive onto single CA3 pyramidal cells, with the effect being more pronounced in M1/M3-dKO cells. In an earlier study, we found that the deletion of M2 receptors in mice disinhibits MF-LTP in a similar fashion, suggesting that endogenous acetylcholine employs both M1/M3 and M2 receptors to constrain MF-LTP. Importantly, such synergism was not observed for MF long-term depression (LTD). Low-frequency stimulation, which reliably induced LTD of MF synapses in control slices, failed to do so in M1/M3-dKO slices and gave rise to LTP instead. In striking contrast, loss of M2 receptors augmented LTD when compared to control slices. Taken together, our data demonstrate convergence of M1/M3 and M2 receptors on MF-LTP, but functional divergence on MF-LTD, with the net effect resulting in a well-balanced bidirectional plasticity of the MF-CA3 pyramidal cell synapse.


Assuntos
Acetilcolina , Fibras Musgosas Hipocampais , Camundongos , Animais , Fibras Musgosas Hipocampais/fisiologia , Receptor Muscarínico M1 , Camundongos Knockout , Hipocampo , Células Piramidais/fisiologia , Receptor Muscarínico M2/genética
9.
Neurobiol Dis ; 184: 106190, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37290578

RESUMO

Embryonic and early postnatal deletion of the gene phosphatase and tensin homolog (PTEN) results in neuronal hypertrophy, formation of aberrant neural networks and spontaneous seizures. Our previous studies document that deletion of PTEN in mature neurons also causes growth of cortical neuron cell bodies and dendrites, but it is unknown how this growth alters connectivity in mature circuits. Here, we explore consequences of deleting PTEN in a focal area of the dentate gyrus in adult male and female mice. PTEN deletion was accomplished by injecting AAV-Cre unilaterally into the dentate gyrus of double transgenic mice with lox-P sites flanking exon 5 of the PTEN gene and stop/flox tdTomato in the Rosa locus (PTENf/f/RosatdTomato). Focal deletion led to progressive increases in the size of the dentate gyrus at the injection site, enlargement of granule cell bodies, and increases in dendritic length and caliber. Quantitative analysis of dendrites by Golgi staining revealed dramatic increases in spine numbers throughout the proximo-distal extent of the dendritic tree, suggesting that dendritic growth is sufficient to induce new synapse formation by input neurons with intact PTEN expression. Tract tracing of input pathways to the dentate gyrus from the ipsilateral entorhinal cortex and commissural/associational system revealed that laminar specificity of termination of inputs is maintained. Mossy fiber axons from PTEN-deleted granule cells expanded their terminal field in CA3 where PTEN expression was intact and supra-granular mossy fibers developed in some mice. These findings document that persistent activation of mTOR via PTEN deletion in fully mature neurons re-initiates a state of robust cell-intrinsic growth, upending connectional homeostasis in fully mature hippocampal circuits.


Assuntos
Corpo Celular , Fibras Musgosas Hipocampais , Camundongos , Animais , Fibras Musgosas Hipocampais/fisiologia , Hipocampo/fisiologia , Camundongos Transgênicos , Dendritos , Giro Denteado
10.
Hippocampus ; 33(8): 906-921, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36938755

RESUMO

Experimental manipulations that interfere with the functional expression of N-methyl-D-aspartate receptors (NMDARs) during prenatal neurodevelopment or critical periods of postnatal development are models that mimic behavioral and neurophysiological abnormalities of schizophrenia. Blockade of NMDARs with MK-801 during early postnatal development alters glutamate release and impairs the induction of NMDAR-dependent long-term plasticity at the CA1 area of the hippocampus. However, it remains unknown if other forms of hippocampal plasticity, such as α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR)-mediated short- and long-term potentiation, are compromised in response to neonatal treatment with MK-801. Consistent with this tenet, short- and long-term potentiation between dentate gyrus axons, the mossy fibers (MF), onto CA3 pyramidal cells (CA3 PCs) are mediated by AMPARs. By combining whole-cell patch clamp and extracellular recordings, we have demonstrated that transient blockade of NMDARs during early postnatal development induces a series of pre- and postsynaptic modifications at the MF-CA3 synapse. We found reduced glutamate release from the mossy boutons, increased paired-pulse ratio, and reduced AMPAR-mediated MF LTP levels. At the postsynaptic level, we found an altered NMDA/AMPA ratio and dysregulation of several potassium conductances that increased the excitability of CA3 PCs. In addition, MK-801-treated animals exhibited impaired spatial memory retrieval in the Barnes maze task. Our data demonstrate that transient hypofunction of NMDARs impacts NMDAR-independent forms of synaptic plasticity of the hippocampus.


Assuntos
Potenciação de Longa Duração , Receptores de N-Metil-D-Aspartato , Animais , Potenciação de Longa Duração/fisiologia , Receptores de N-Metil-D-Aspartato/metabolismo , Fibras Musgosas Hipocampais/fisiologia , Maleato de Dizocilpina/farmacologia , Células Piramidais/fisiologia , Hipocampo/metabolismo , Sinapses/fisiologia , Glutamatos , Transmissão Sináptica/fisiologia
11.
Sci Adv ; 9(8): eadd3616, 2023 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-36812326

RESUMO

Presynaptic long-term potentiation (LTP) is thought to play an important role in learning and memory. However, the underlying mechanism remains elusive because of the difficulty of direct recording during LTP. Hippocampal mossy fiber synapses exhibit pronounced LTP of transmitter release after tetanic stimulation and have been used as a model of presynaptic LTP. Here, we induced LTP by optogenetic tools and applied direct presynaptic patch-clamp recordings. The action potential waveform and evoked presynaptic Ca2+ currents remained unchanged after LTP induction. Membrane capacitance measurements suggested higher release probability of synaptic vesicles without changing the number of release-ready vesicles after LTP induction. Synaptic vesicle replenishment was also enhanced. Furthermore, stimulated emission depletion microscopy suggested an increase in the numbers of Munc13-1 and RIM1 molecules within active zones. We propose that dynamic changes in the active zone components may be relevant for the increased fusion competence and synaptic vesicle replenishment during LTP.


Assuntos
Potenciação de Longa Duração , Fibras Musgosas Hipocampais , Fibras Musgosas Hipocampais/fisiologia , Potenciação de Longa Duração/fisiologia , Sinapses/fisiologia , Vesículas Sinápticas , Potenciais de Ação/fisiologia
12.
eNeuro ; 10(2)2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36697256

RESUMO

Morphologically similar axon boutons form synaptic contacts with diverse types of postsynaptic cells. However, it is less known to what extent the local axonal excitability, presynaptic action potentials (APs), and AP-evoked calcium influx contribute to the functional diversity of synapses and neuronal activity. This is particularly interesting in synapses that contact cell types that show only subtle cellular differences but fulfill completely different physiological functions. Here, we tested these questions in two synapses that are formed by rat hippocampal granule cells (GCs) onto hilar mossy cells (MCs) and CA3 pyramidal cells, which albeit share several morphologic and synaptic properties but contribute to distinct physiological functions. We were interested in the deterministic steps of the action potential-calcium ion influx coupling as these complex modules may underlie the functional segregation between and within the two cell types. Our systematic comparison using direct axonal recordings showed that AP shapes, Ca2+ currents and their plasticity are indistinguishable in synapses onto these two cell types. These suggest that the complete module that couples granule cell activity to synaptic release is shared by hilar mossy cells and CA3 pyramidal cells. Thus, our findings present an outstanding example for the modular composition of distinct cell types, by which cells employ different components only for those functions that are deterministic for their specialized functions, while many of their main properties are shared.


Assuntos
Cálcio , Fibras Musgosas Hipocampais , Ratos , Animais , Potenciais de Ação/fisiologia , Fibras Musgosas Hipocampais/fisiologia , Cálcio/metabolismo , Transmissão Sináptica/fisiologia , Células Piramidais/fisiologia , Terminações Pré-Sinápticas/fisiologia , Sinapses/metabolismo
13.
J Neurosci ; 42(49): 9253-9262, 2022 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-36288945

RESUMO

Kainate receptors (KARs) form a family of ionotropic glutamate receptors that regulate the activity of neuronal networks by both presynaptic and postsynaptic mechanisms. Their implication in pathologies is well documented for epilepsy. The higher prevalence of epileptic symptoms in Alzheimer's disease (AD) patients questions the role of KARs in AD. Here we investigated whether the synaptic expression and function of KARs was impaired in mouse models of AD. We addressed this question by immunostaining and electrophysiology at synapses between mossy fibers and CA3 pyramidal cells, in which KARs are abundant and play a prominent physiological role. We observed a decrease of the immunostaining for GluK2 in the stratum lucidum in CA3, and of the amplitude and decay time of synaptic currents mediated by GluK2-containing KARs in an amyloid mouse model (APP/PS1) of AD. Interestingly, a similar phenotype was observed in CA3 pyramidal cells in male and female mice with a genetic deletion of either presenilin or APP/APLP2 as well as in organotypic cultures treated with γ-secretase inhibitors. Finally, the GluK2 protein interacts with full-length and C-terminal fragments of APP. Overall, our data suggest that APP stabilizes KARs at synapses, possibly through a transsynaptic mechanism, and this interaction is under the control the γ-secretase proteolytic activity of presenilin.SIGNIFICANCE STATEMENT Synaptic impairment correlates strongly with cognitive deficits in Alzheimer's disease (AD). In this context, many studies have addressed the dysregulation of AMPA and NMDA ionotropic glutamate receptors. Kainate receptors (KARs), which form the third family of iGluRs, represent an underestimated actor in the regulation of neuronal circuits and have not yet been examined in the context of AD. Here we provide evidence that synaptic KARs are markedly impaired in a mouse model of AD. Additional experiments indicate that the γ-secretase activity of presenilin acting on the amyloid precursor protein controls synaptic expression of KAR. This study clearly indicates that KARs should be taken into consideration whenever addressing synaptic dysfunction and related cognitive deficits in the context of AD.


Assuntos
Secretases da Proteína Precursora do Amiloide , Ácido Caínico , Presenilina-1 , Receptores de Ácido Caínico , Animais , Feminino , Masculino , Camundongos , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Ácido Caínico/farmacologia , Fibras Musgosas Hipocampais/fisiologia , Presenilina-1/metabolismo , Presenilinas/metabolismo , Receptores de Ácido Caínico/metabolismo , Sinapses/fisiologia
14.
Hippocampus ; 32(11-12): 797-807, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36063105

RESUMO

Understanding the role of dentate gyrus (DG) mossy cells (MCs) in learning and memory has rapidly evolved due to increasingly precise methods for targeting MCs and for in vivo recording and activity manipulation in rodents. These studies have shown MCs are highly active in vivo, strongly remap to contextual manipulation, and that their inhibition or hyperactivation impairs pattern separation and location or context discrimination. Less well understood is how MC activity is modulated by neurohormonal mechanisms, which might differentially control the participation of MCs in cognitive functions during discrete states, such as hunger or satiety. In this study, we demonstrate that glucagon-like peptide-1 (GLP-1), a neuropeptide produced in the gut and the brain that regulates food consumption and hippocampal-dependent mnemonic function, might regulate MC function through expression of its receptor, GLP-1R. RNA-seq demonstrated that most, though not all, Glp1r in hippocampal principal neurons is expressed in MCs, and in situ hybridization revealed strong expression of Glp1r in hilar neurons. Glp1r-ires-Cre mice crossed with Ai14D reporter mice followed by co-labeling for the MC marker GluR2/3 revealed that almost all MCs in the ventral DG expressed Glp1r and that almost all Glp1r-expressing hilar neurons were MCs. However, only ~60% of dorsal DG MCs expressed Glp1r, and Glp1r was also expressed in small hilar neurons that were not MCs. Consistent with this expression pattern, peripheral administration of the GLP-1R agonist exendin-4 (5 µg/kg) increased cFos expression in ventral but not dorsal DG hilar neurons. Finally, whole-cell patch-clamp recordings from ventral MCs showed that bath application of exendin-4 (200 nM) depolarized MCs and increased action potential firing. Taken together, this study adds to known MC activity modulators a neurohormonal mechanism that may preferentially affect ventral DG physiology and may potentially be targetable by several GLP-1R pharmacotherapies already in clinical use.


Assuntos
Receptor do Peptídeo Semelhante ao Glucagon 1 , Fibras Musgosas Hipocampais , Animais , Camundongos , Receptor do Peptídeo Semelhante ao Glucagon 1/genética , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Exenatida/farmacologia , Exenatida/metabolismo , Fibras Musgosas Hipocampais/fisiologia , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Hipocampo/metabolismo , Giro Denteado/metabolismo
15.
Neurobiol Dis ; 172: 105816, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35820646

RESUMO

Early cognitive impairment in Alzheimer's disease may result in part from synaptic dysfunction caused by the accumulation oligomeric assemblies of amyloid ß-protein (Aß). Changes in hippocampal function seem critical for cognitive impairment in early Alzheimer's disease (AD). Diffusible oligomers of Aß (oAß) have been shown to block canonical long-term potentiation (LTP) in the CA1 area of hippocampus, but whether there is also a direct effect of oAß on synaptic transmission and plasticity at synapses between mossy fibers (axons) from the dentate gyrus granule cells and CA3 pyramidal neurons (mf-CA3 synapses) is unknown. Studies in APP transgenic mice have suggested an age-dependent impairment of mossy fiber LTP. Here we report that although endogenous AD brain-derived soluble oAß had no effect on mossy-fiber basal transmission, it strongly impaired paired-pulse facilitation in the mossy fiber pathway and presynaptic mossy fiber LTP (mf-LTP). Selective activation of both ß1 and ß2 adrenergic receptors and their downstream cAMP/PKA signaling pathway prevented oAß-mediated inhibition of mf-LTP. Unexpectedly, activation of the cGMP/PKG signaling pathway also prevented oAß-impaired mf-LTP. Our results reveal certain specific pharmacological targets to ameliorate human oAß-mediated impairment at the mf-CA3 synapse.


Assuntos
Doença de Alzheimer , Potenciação de Longa Duração , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Hipocampo/metabolismo , Humanos , Potenciação de Longa Duração/fisiologia , Camundongos , Fibras Musgosas Hipocampais/fisiologia , Sinapses/metabolismo , Transmissão Sináptica/fisiologia
16.
J Physiol ; 600(14): 3355-3381, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35671148

RESUMO

The hippocampus is an elongated brain structure which runs along a ventral-to-dorsal axis in rodents, corresponding to the anterior-to-posterior axis in humans. A glutamatergic cell type in the dentate gyrus (DG), the mossy cells (MCs), establishes extensive excitatory collateral connections with the DG principal cells, the granule cells (GCs), and inhibitory interneurons in both hippocampal hemispheres along the longitudinal axis. Although coupling of two physically separated GC populations via long-axis projecting MCs is instrumental for information processing, the connectivity and synaptic features of MCs along the longitudinal axis are poorly defined. Here, using channelrhodopsin-2 assisted circuit mapping, we showed that MC excitation results in a low synaptic excitation-inhibition (E/I) balance in the intralamellar (local) GCs, but a high synaptic E/I balance in the translamellar (distant) ones. In agreement with the differential E/I balance along the ventrodorsal axis, activation of MCs either enhances or suppresses the local GC response to the cortical input, but primarily promotes the distant GC activation. Moreover, activation of MCs enhances the spike timing precision of the local GCs, but not that of the distant ones. Collectively, these findings suggest that MCs differentially regulate the local and distant GC activity through distinct synaptic mechanisms. KEY POINTS: Hippocampal mossy cell (MC) pathways differentially regulate granule cell (GC) activity along the longitudinal axis. MCs mediate a low excitation-inhibition balance in intralamellar (local) GCs, but a high excitation-inhibition balance in translamellar (distant) GCs. MCs enhance the spiking precision of local GCs, but not distant GCs. MCs either promote or suppress local GC activity, but primarily promote distant GC activation.


Assuntos
Hipocampo , Fibras Musgosas Hipocampais , Channelrhodopsins , Giro Denteado/fisiologia , Hipocampo/fisiologia , Humanos , Interneurônios , Fibras Musgosas Hipocampais/fisiologia
17.
Neurochem Int ; 158: 105378, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35753511

RESUMO

Temporal lobe epilepsy (TLE) is the most common form of focal epilepsies. Pharmacological treatment with anti-seizure drugs (ASDs) remains the mainstay in epilepsy management. Levetiracetam (LEV) is a second-generation ASD with a novel SV2A protein target and is indicated for treating focal epilepsies. While there is considerable literature in acute models, its effect in chronic epilepsy is less clear. Particularly, its effects on neuronal excitability, synaptic plasticity, adult hippocampal neurogenesis, and histological changes in chronic epilepsy have not been evaluated thus far, which formed the basis of the present study. Six weeks post-lithium-pilocarpine-induced status epilepticus (SE), epileptic rats were injected with levetiracetam (54 mg/kg b.w. i.p.) once daily for two weeks. Following LEV treatment, Schaffer collateral - CA1 (CA3-CA1) synaptic plasticity and structural changes in hippocampal subregions CA3 and CA1 were evaluated. The number of doublecortin (DCX+) and reelin (RLN+) positive neurons was estimated. Further, mossy fiber sprouting was evaluated in DG by Timm staining, and splash test was performed to assess the anxiety-like behavior. Chronic epilepsy resulted in decreased basal synaptic transmission and increased paired-pulse facilitation without affecting post-tetanic potentiation and long-term potentiation. Moreover, chronic epilepsy decreased hippocampal subfields volume, adult hippocampal neurogenesis, and increased reelin expression and mossy fiber sprouting with increased anxiety-like behavior. LEV treatment restored basal synaptic transmission and paired-pulse facilitation ratio in CA3-CA1 synapses. LEV also restored the CA1 subfield volume in chronic epilepsy. LEV did not affect epilepsy-induced abnormal adult hippocampal neurogenesis, ectopic migration of newborn granule cells, mossy fiber sprouting in DG, and anxiety-like behavior. Our results indicate that in addition to reducing seizures, LEV has favorable effects on synaptic transmission and structural plasticity in chronic epilepsy. These findings add new dimensions to the use of LEV in chronic epilepsy and paves way for further research into its effects on cognition and affective behavior.


Assuntos
Epilepsia do Lobo Temporal , Epilepsia , Animais , Giro Denteado/patologia , Epilepsia/induzido quimicamente , Epilepsia/tratamento farmacológico , Hipocampo/patologia , Levetiracetam/farmacologia , Fibras Musgosas Hipocampais/patologia , Fibras Musgosas Hipocampais/fisiologia , Plasticidade Neuronal/fisiologia , Ratos
18.
Biochim Biophys Acta Mol Cell Res ; 1869(9): 119279, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35526721

RESUMO

Mossy cells (MCs) are glutamatergic cells of the dentate gyrus with an important role in temporal lobe epilepsy. Under physiological conditions MCs can control both network excitations via direct synapses to granule cells and inhibition via connections to GABAergic interneurons innervating granule cells. In temporal lobe epilepsy mossy cell loss is one of the major hallmarks, but whether the surviving MCs drive or inhibit seizure initiation and generalization is still a debate. The aim of the present review is to summarize the latest findings on the role of mossy cells in healthy and overexcited hippocampus.


Assuntos
Epilepsia do Lobo Temporal , Epilepsia , Hipocampo , Humanos , Fibras Musgosas Hipocampais/fisiologia , Convulsões
19.
J Mol Neurosci ; 72(6): 1243-1258, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35618880

RESUMO

Neuronal hyperactivation of the mTOR signaling pathway may play a role in driving the pathological sequelae that follow status epilepticus. Animal studies using pharmacological tools provide support for this hypothesis, however, systemic inhibition of mTOR-a growth pathway active in every mammalian cell-limits conclusions on cell type specificity. To circumvent the limitations of pharmacological approaches, we developed a viral/genetic strategy to delete Raptor or Rictor, inhibiting mTORC1 or mTORC2, respectively, from excitatory hippocampal neurons after status epilepticus in mice. Raptor or Rictor was deleted from roughly 25% of hippocampal granule cells, with variable involvement of other hippocampal neurons, after pilocarpine status epilepticus. Status epilepticus induced the expected loss of hilar neurons, sprouting of granule cell mossy fiber axons and reduced c-Fos activation. Gene deletion did not prevent these changes, although Raptor loss reduced the density of c-Fos-positive granule cells overall relative to Rictor groups. Findings demonstrate that mTOR signaling can be effectively modulated with this approach and further reveal that blocking mTOR signaling in a minority (25%) of granule cells is not sufficient to alter key measures of status epilepticus-induced pathology. The approach is suitable for producing higher deletion rates, and altering the timing of deletion, which may lead to different outcomes.


Assuntos
Epilepsia do Lobo Temporal , Aves Predatórias , Estado Epiléptico , Animais , Modelos Animais de Doenças , Epilepsia do Lobo Temporal/metabolismo , Hipocampo/metabolismo , Mamíferos , Camundongos , Fibras Musgosas Hipocampais/patologia , Fibras Musgosas Hipocampais/fisiologia , Pilocarpina , Proteína Companheira de mTOR Insensível à Rapamicina/genética , Proteína Companheira de mTOR Insensível à Rapamicina/metabolismo , Aves Predatórias/metabolismo , Estado Epiléptico/genética , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo
20.
Hippocampus ; 32(5): 401-410, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35301773

RESUMO

Mossy cells (MCs) in the hilus of the dentate gyrus (DG) receive increasing attention as a major player controlling information processing in the DG network. Furthermore, disturbed MC activity has been implicated in widespread neuropsychiatric disorders such as epilepsy and major depression. Using whole-cell patch-clamp recordings from MCs in acute hippocampal slices from wild type and transgenic mice, we demonstrate that activin, a member of the transforming growth factor-ß (TGF-ß) family, has a strong neuromodulatory effect on MC activity. Disruption of activin receptor signaling reduced MC firing, dampened their excitatory input and augmented their inhibitory input. By contrast, acute application of recombinant activin A strongly increased MC activity and promoted excitatory synaptic drive. Notably, similar changes of MC activity have been observed in a rodent model of depression and after antidepressant drug therapy, respectively. Given that a rise in activin signaling particularly in the DG has been proposed as a mechanism of antidepressant action, our data suggest that the effect of activin on MC excitability might make a considerable contribution in this regard.


Assuntos
Hipocampo , Fibras Musgosas Hipocampais , Ativinas/farmacologia , Animais , Giro Denteado/fisiologia , Hipocampo/fisiologia , Camundongos , Camundongos Transgênicos , Fibras Musgosas Hipocampais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...